我院陈建新教授团队在顶级学术期刊《Nature Communications》发表研究成果

发布者:陈希文 发布时间:2023-09-19 浏览次数:509



光学显微成像技术是生命科学与基础医学领域的重要研究工具。然而,因成像系统稳定性或生物样本质量等多重不确定因素,拼接显微图像不可避免地会存在不同类型的条纹或伪影,严重影响图像质量和下游定量分析。

为有效解决此类问题,论文提出了一种基于深度学习的条纹自校正方法(Stripe Self-Correction method, SSCOR)。该方法提出了一种邻近采样方案和对抗性循环自训练范式,利用从拼接图像自身采样的无条纹图像块来校正其相邻的条纹图像块,在校正过程中无需任何成像参数估计或原始拼接信息即可复原真实图像。与现有方法相比,SSCOR已在多光子、受激拉曼、宽场荧光、H&E染色4种不同模态和成像条件的数据集上取得最佳性能,不仅可以自适应地校正非均匀、倾斜、网状条纹,还可以消除扫描、气泡和离焦伪影。该方法突破了国际商用显微图像条纹校正软件间的技术壁垒,为生物医学成像工作者提供了一种全新的图像复原解决方案,推动了智能显微成像技术的发展。

该研究成果以“A deep learning-based stripe self-correction method for stitched microscopic images”为题发表在顶级学术期刊《Nature Communications》上。福州大学王舒副研究员为论文的第一作者,陈建新教授、福州大学黄峰研究员、福州大学刘文犀教授为论文的共同通讯作者。该研究得到国家科技重点项目、国家自然科学基金、福建省自然科学基金的支持。

论文链接:

https://www.nature.com/articles/s41467-023-41165-1



友情链接:
福建师范大学 科学技术处 财务处 发展规划处 友情链接 友情链接 友情链接 友情链接 友情链接 友情链接

Copyright 光电与信息工程学院 2018, All Rights Reserved

地址:福建省福州市大学城科技路1号福建师范大学旗山校区(350117)